

Matthew Neal Mechanical Option Dr. Stephen Treado, Adviser

The 🦯 Ganae JBuilding Matthew Neal's Senior Thesis

> Overview **Existing Conditions Geothermal Depth** System Alternatives **Energy & Emissions** Life Cycle Cost Analysis Acoustics **Onsite Measurements** Heat Pumps **Campus-wide Geothermal** Conclusions

Matthew Neal, Mechanical Option

Overview

Dr. Stephen Treado, Advisor

Spring 2014

The Gaige Technology and Business Innovation Building

• Reading, PA – PSU Berks Campus

April 15th, 2014

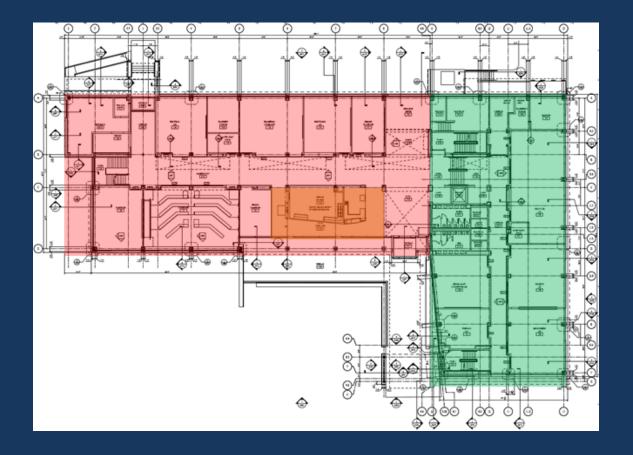
AE Senior Thesis Presentation

The 🔿 Garae Building Matthew Neal's Senior Thesis

> Overview **Existing Conditions Geothermal Depth** System Alternatives **Energy & Emissions** Life Cycle Cost Analysis Acoustics **Onsite Measurements** Heat Pumps **Campus-wide Geothermal** Conclusions

Matthew Neal, Mechanical Option

Overview


Dr. Stephen Treado, Advisor

- ~ 64,000 SF

Spring 2014

The Gaige Technology and Business Innovation Building

• Reading, PA – PSU Berks Campus • Classrooms, Labs and Offices

- Constructed in 2010/2011
- \$25.7 Million
- LEED Gold

April 15th, 2014

AE Senior Thesis Presentation

The 🖊 Garae Building Matthew Neal's Senior Thesis

> Overview **Existing Conditions Geothermal Depth** System Alternatives **Energy & Emissions** Life Cycle Cost Analysis Acoustics **Onsite Measurements** Heat Pumps **Campus-wide Geothermal** Conclusions

Existing Conditions

• Packaged Roof-Top Units

VAV with Reheat

Matthew Neal, Mechanical Option

Dr. Stephen Treado, Advisor

Spring 2014

- CO₂ and Occupancy Sensors
- Fin tube / Radiant Panel Heating
- Natural Gas & Electricity Utilities

April 15th, 2014

AE Senior Thesis Presentation

The 🦯 Garae Building Matthew Neal's Senior Thesis

> Overview **Existing Conditions Geothermal Depth** System Alternatives **Energy & Emissions** Life Cycle Cost Analysis Acoustics **Onsite Measurements** Heat Pumps **Campus-wide Geothermal** Conclusions

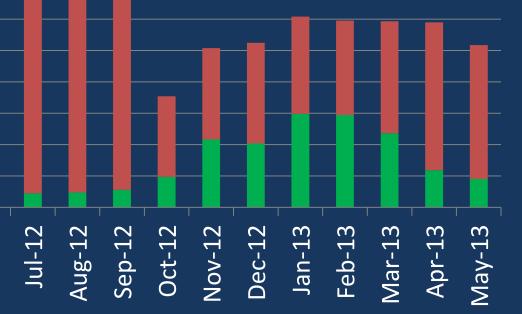
Existing Conditions

• Initially modeled using Trace 700 Based on engineer's model

Matthew Neal, Mechanical Option

Dr. Stephen Treado, Advisor

Spring 2014


Energy Model

\$9,000.00 \$8,000.00 \$7,000.00 \$6,000.00 \$5,000.00 \$4,000.00 \$3,000.00 \$2,000.00 \$1,000.00 \$-May-12 Jun-1

April 15th, 2014

Electricity Natural Gas

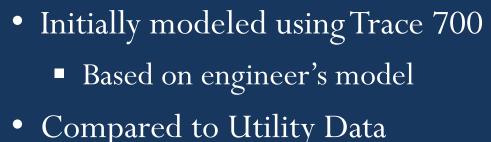
AE Senior Thesis Presentation

The 🦯 tavae JBuilding Matthew Neal's Senior Thesis

> Overview **Existing Conditions Geothermal Depth** System Alternatives **Energy & Emissions** Life Cycle Cost Analysis Acoustics **Onsite Measurements** Heat Pumps **Campus-wide Geothermal** Conclusions

Matthew Neal, Mechanical Option

Dr. Stephen Treado, Advisor


Existing Conditions

Spring 2014

Energy Model

- Compared to Utility Data

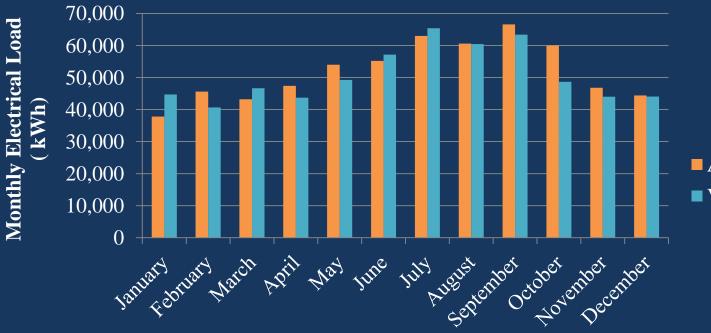
April 15th, 2014

AE Senior Thesis Presentation

Acutal Costs Modeled Costs

The 🦯 tavae JBuilding Matthew Neal's Senior Thesis

> Overview **Existing Conditions Geothermal Depth** System Alternatives **Energy & Emissions** Life Cycle Cost Analysis Acoustics **Onsite Measurements** Heat Pumps **Campus-wide Geothermal** Conclusions


Matthew Neal, Mechanical Option

Dr. Stephen Treado, Advisor

Spring 2014

Existing Conditions

- Initially modeled using Trace 700 Based on engineer's model
- Compared to utility data
- Validated to utility data
 - 2.1 % maximum error

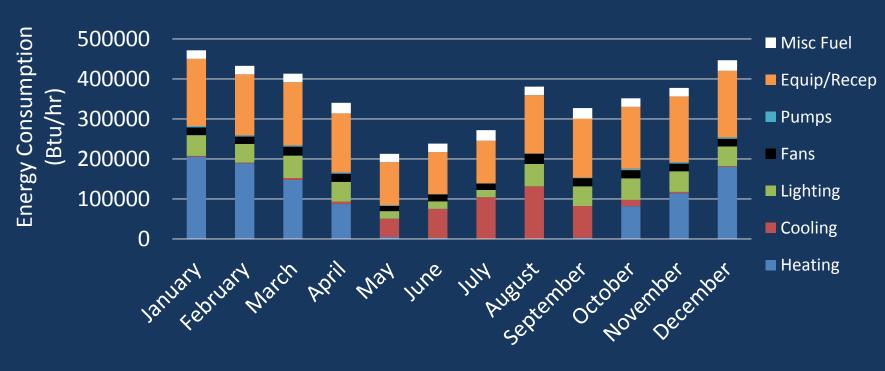
Energy Model

Actual Consumption ■ Validated Model

April 15th, 2014

AE Senior Thesis Presentation

Actual Consumption ■ Validated Model


The 🦯 Gaiae JBuilding Matthew Neal's Senior Thesis

> Overview **Existing Conditions Geothermal Depth** System Alternatives **Energy & Emissions** Life Cycle Cost Analysis Acoustics **Onsite Measurements** Heat Pumps **Campus-wide Geothermal** Conclusions

Geothermal Depth

Initial Motivation

- Large open space
- Potential energy savings
- Potential emissions reductions
- Life-costs of system

Matthew Neal, Mechanical Option

Dr. Stephen Treado, Advisor

Spring 2014

Open area surrounding Gaige Building

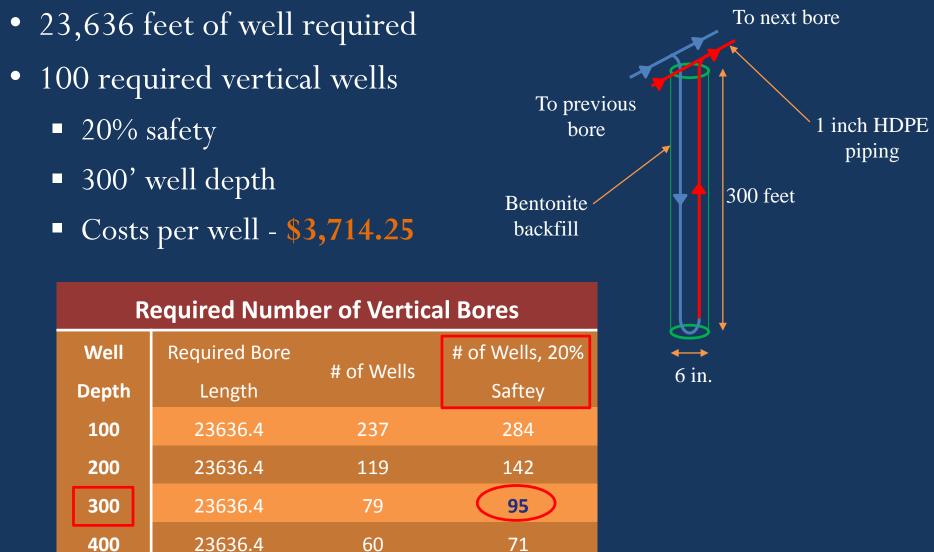
April <u>15th</u>, 2014

AE Senior Thesis Presentation

The 🔿 Gange Building Matthew Neal's Senior Thesis

> Overview **Existing Conditions Geothermal Depth** System Alternatives **Energy & Emissions** Life Cycle Cost Analysis Acoustics **Onsite Measurements** Heat Pumps **Campus-wide Geothermal** Conclusions

Matthew Neal, Mechanical Option


Geothermal Depth


Alternative 1: Vertical Loop System

- - 20% safety
 - 300' well depth

Require	
Well	Requir
Depth	Ler
100	236
200	236
300	236
400	236

Dr. Stephen Treado, Advisor Spring 2014

April 15th, 2014

piping

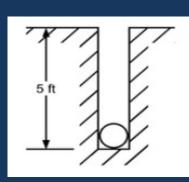
AE Senior Thesis Presentation

The 🔿 Garae Building Matthew Neal's Senior Thesis

> Overview **Existing Conditions Geothermal Depth** System Alternatives **Energy & Emissions** Life Cycle Cost Analysis Acoustics **Onsite Measurements** Heat Pumps **Campus-wide Geothermal** Conclusions

Matthew Neal, Mechanical Option

Dr. Stephen Treado, Advisor


Spring 2014

Geothermal Depth

Alternative 2: Horizontal Loop System

- 28,550 ft. of horizontal loops
 - Based on 20% safety
 - Cost per 300': **\$3,435.62**

Required Number of Horizontal Loops			
Loop Length	Number of Loops	Total Length	
800	20	16000	
775	1	775	
750	4	3000	
700	5	3500	
675	1	675	
650	4	2600	
400	5	2000	
	Total Length	28550	

April 15th, 2014

AE Senior Thesis Presentation

The Gaige Building Matthew Neal's Senior Thesis

> Overview **Existing Conditions Geothermal Depth** System Alternatives **Energy & Emissions** Life Cycle Cost Analysis Acoustics **Onsite Measurements** Heat Pumps **Campus-wide Geothermal** Conclusions

Matthew Neal, Mechanical Option

Dr. Stephen Treado, Advisor

Geothermal Depth

Spring 2014

Alternative Cost Comparisons

- Increased first costs:
 - Savings from original design
 - Added geothermal costs
 - Time & Location adjustments

Increase Locatio Increase Savings Time M Savings

Vertical - Increased First-Costs			
Cost Item	Amount		
ed First Cost - General	\$ 655,736.06		
on Multiplier - Reading PA	0.988		
ed First Cost - Reading	\$ 647,867.23		
s from Original Design - 2009	\$ 484,710.00		
1ultiplier - 2014 to 2009	0.889		
s from Original Design - 2014	\$ 545,230.60		
Overall First Cost Increase:	\$ 102,636.63		

Horizontal - Increased First-Costs

Cost Item Increased First Cost - General Location Multiplier - Reading PA Increased First Cost - Reading Savings from Original Design - 2009 Time Multiplier - 2014 to 2009 Savings from Original Design - 2014 Overall First Cos

April 15th, 2014

AE Senior Thesis Presentation

	Amount
	\$ 601,959.52
	0.988
	\$ 594,736.01
)	\$ 484,710.00
	0.889
l l	\$ 545,230.60
st Increase:	\$ 49,505.41

The n Gaige JBuilding Matthew Neal's Senior Thesis

> Overview **Existing Conditions Geothermal Depth** System Alternatives **Energy & Emissions** Life Cycle Cost Analysis Acoustics **Onsite Measurements** Heat Pumps **Campus-wide Geothermal** Conclusions

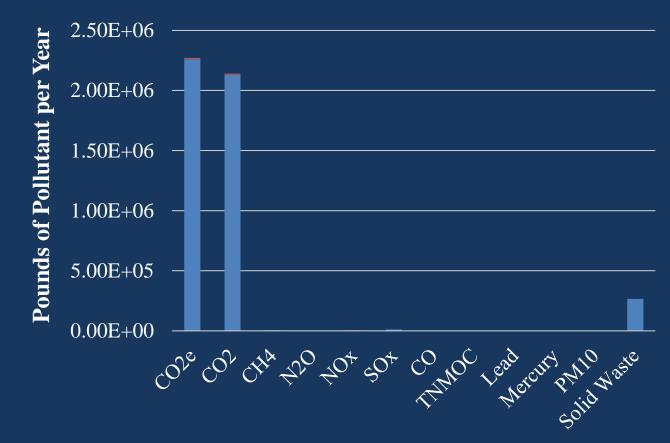
Geothermal Depth

• Little change in emissions

Pollutant
CO2e
CO ₂
CH4
NOx
SOx
со
Solid Waste

Matthew Neal, Mechanical Option

Dr. Stephen Treado, Advisor


Spring 2014

Annual Emissions Reductions

- Decreased natural gas emissions
- Increased electricity emissions

D .CC	• • • •			•
Difference	in lota	Annual	Em	issions

Original Emissions	Geothermal Emissions	Decrease
(lb/yr)	(lb/yr)	%
2321124.8	2270409.1	2.18%
2194071.2	2140470.1	2.44%
4526.3	4661.8	-2.99%
3896.3	3905.4	-0.23%
10799.6	11128.1	-3.04%
1173.6	1117.3	4.80%
258316.8	266191.0	-3.05%

April 15th, 2014

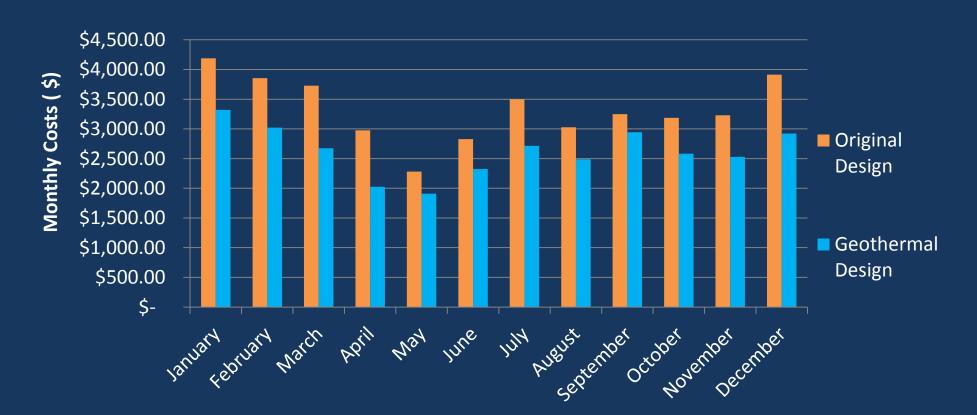
AE Senior Thesis Presentation

The 🔿 Gaige Building Matthew Neal's Senior Thesis

> Overview **Existing Conditions Geothermal Depth** System Alternatives **Energy & Emissions** Life Cycle Cost Analysis Acoustics **Onsite Measurements** Heat Pumps **Campus-wide Geothermal** Conclusions

Geothermal Depth

Heat pump operation


Matthew Neal, Mechanical Option

Dr. Stephen Treado, Advisor

Spring 2014

Annual Energy Savings

- Almost eliminated natural gas consumption
- Similar annual electricity consumption
- Annual Energy Savings: \$8,494.00


AE Senior Thesis Presentation

The 🦯 Ganae JBuilding Matthew Neal's Senior Thesis

> Overview **Existing Conditions Geothermal Depth** System Alternatives **Energy & Emissions** Life Cycle Cost Analysis Acoustics **Onsite Measurements** Heat Pumps **Campus-wide Geothermal** Conclusions

Geothermal Depth

- Vertical Well Design:
 - Simple: 12.1 years
 - Discounted: 12.7 years

Matthew Neal, Mechanical Option

Dr. Stephen Treado, Advisor

Spring 2014

Life Cycle Cost Analysis

- Horizontal Loop Design:
 - Simple: 5.8 years
 - Discounted: 6.1 years

April 15th, 2014

AE Senior Thesis Presentation

The 🔿 Garge Building Matthew Neal's Senior Thesis

> Overview **Existing Conditions Geothermal Depth** System Alternatives **Energy & Emissions** Life Cycle Cost Analysis Acoustics **Onsite Measurements** Heat Pumps **Campus-wide Geothermal** Conclusions

Geothermal Depth

• Horizontal Design

Large space requirements

• Vertical Design

Less space requirements

Matthew Neal, Mechanical Option


Dr. Stephen Treado, Advisor

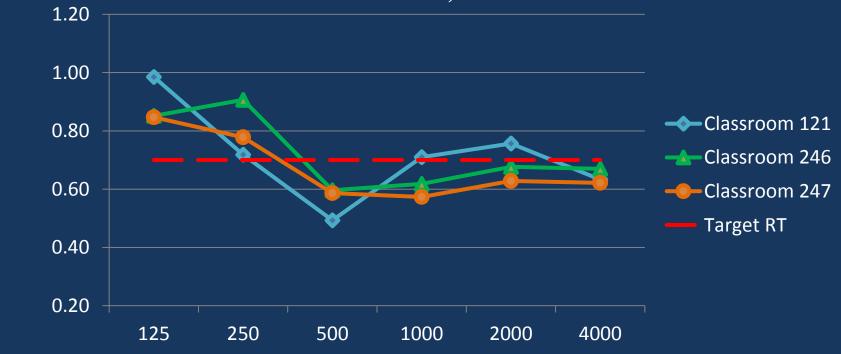
Spring 2014

Alternative Selection

Best Payback – 6.1 years

■ Favorable Payback – 12.7 years

AE Senior Thesis Presentation


The 🦯 ranae JBuilding Matthew Neal's Senior Thesis

> Overview **Existing Conditions Geothermal Depth** System Alternatives **Energy & Emissions** Life Cycle Cost Analysis Acoustics **Onsite Measurements** Heat Pumps **Campus-wide Geothermal** Conclusions

Acoustics Breadth

Onsite Measurements

- Comparisons to ANSI S12.60
- Reverberation Time (T30)
 - $0.7 \text{ for} > 10,000 \text{ ft}^3$
 - $0.6 \text{ for} < 10,000 \text{ ft}^3$

Matthew Neal, Mechanical Option

Dr. Stephen Treado, Advisor

Spring 2014

Classrooms $> 10,000 \text{ ft}^3$

April 15th, 2014

125

250

500

1.10

0.90

0.70

0.50

0.30

0.10

AE Senior Thesis Presentation

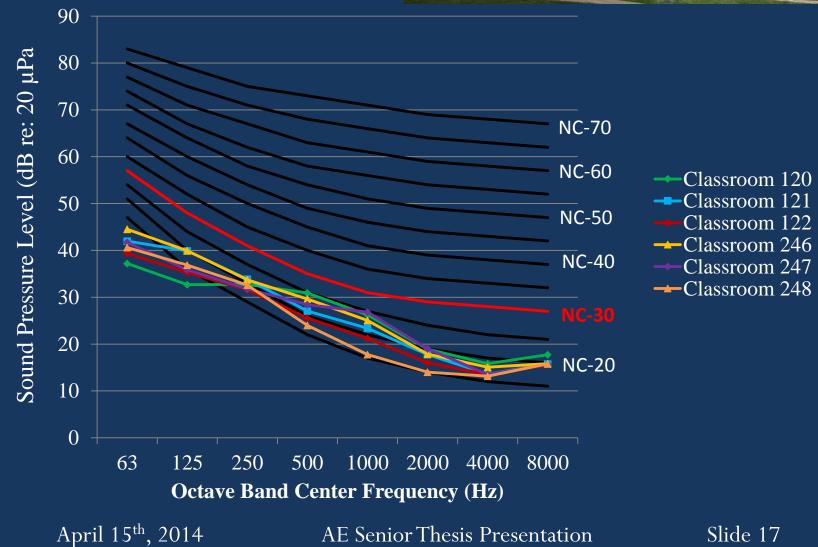
The 🦯 Ganae Building Matthew Neal's Senior Thesis

> Overview **Existing Conditions Geothermal Depth** System Alternatives **Energy & Emissions** Life Cycle Cost Analysis Acoustics **Onsite Measurements** Heat Pumps **Campus-wide Geothermal** Conclusions

Matthew Neal, Mechanical Option

Acoustics Breadth

Onsite Measurements


- - NC 30

Dr. Stephen Treado, Advisor

Spring 2014

• Comparisons to ANSI S12.60 • Background Noise Level (BNL)

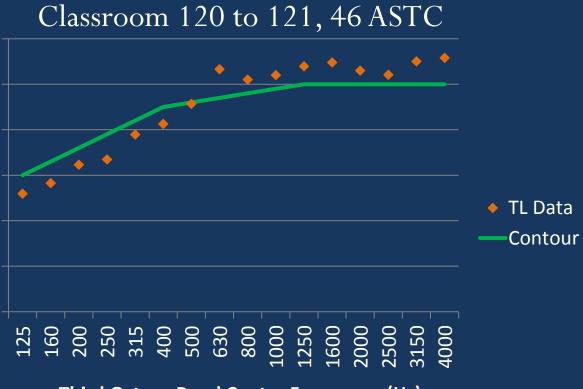
AE Senior Thesis Presentation

The 🦯 anae JBuilding Matthew Neal's Senior Thesis

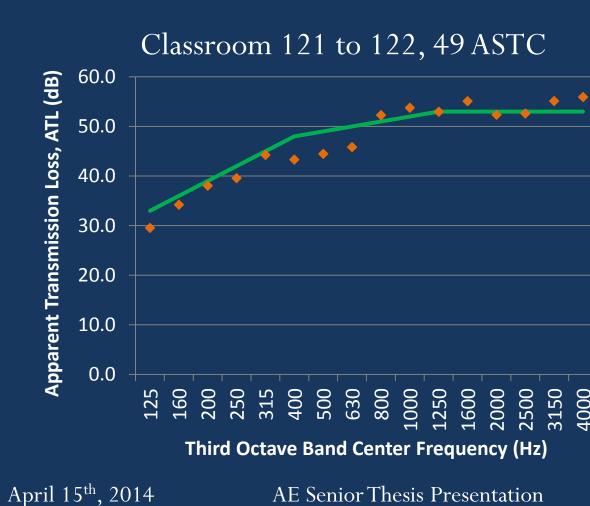
> Overview **Existing Conditions Geothermal Depth** System Alternatives **Energy & Emissions** Life Cycle Cost Analysis Acoustics **Onsite Measurements** Heat Pumps **Campus-wide Geothermal** Conclusions

Acoustics Breadth

Onsite Measurements


- Comparisons to ANSI S12.60
- Transmission Loss (TL) & Sound Trans. Coefficient (STC) ■ STC – 50 between classrooms

АТС	60.0	
oss, 4		50.0
ion L		40.0
arent Transmiss (dB)	30.0	
	20.0	
	10.0	
App		0.0


Matthew Neal, Mechanical Option

Dr. Stephen Treado, Advisor

Spring 2014

Third Octave Band Center Frequency (Hz)

TL Data Contour

AE Senior Thesis Presentation

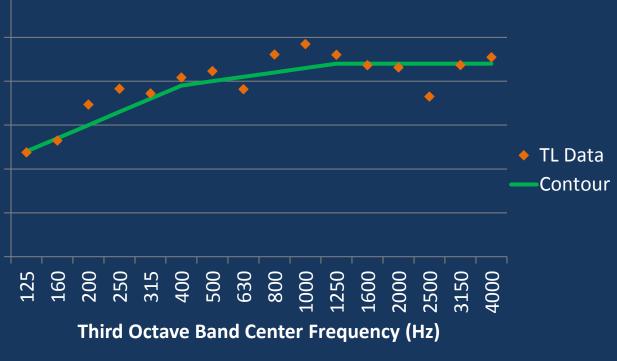
The 🦯 anae JBuilding Matthew Neal's Senior Thesis

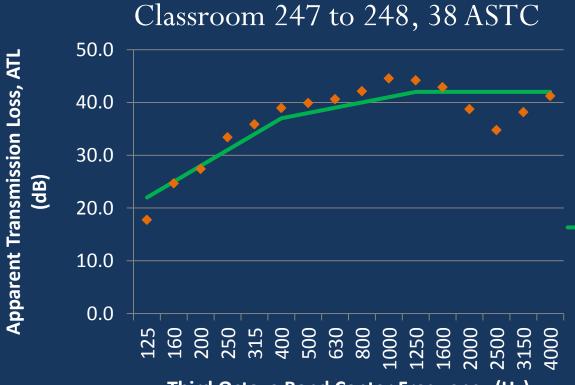
> Overview **Existing Conditions Geothermal Depth** System Alternatives **Energy & Emissions** Life Cycle Cost Analysis Acoustics **Onsite Measurements** Heat Pumps **Campus-wide Geothermal** Conclusions

Acoustics Breadth

Onsite Measurements

- Comparisons to ANSI S12.60
- Transmission Loss (TL) & Sound Trans. Coefficient (STC) ■ STC – 50 between classrooms


oss, ATL	60.0
	50.0
sion l	40.0
Apparent Transmis: (dB)	30.0
	20.0
	10.0
	0.0


Matthew Neal, Mechanical Option

Dr. Stephen Treado, Advisor

Spring 2014

Classroom 246 to 247, 40 ASTC

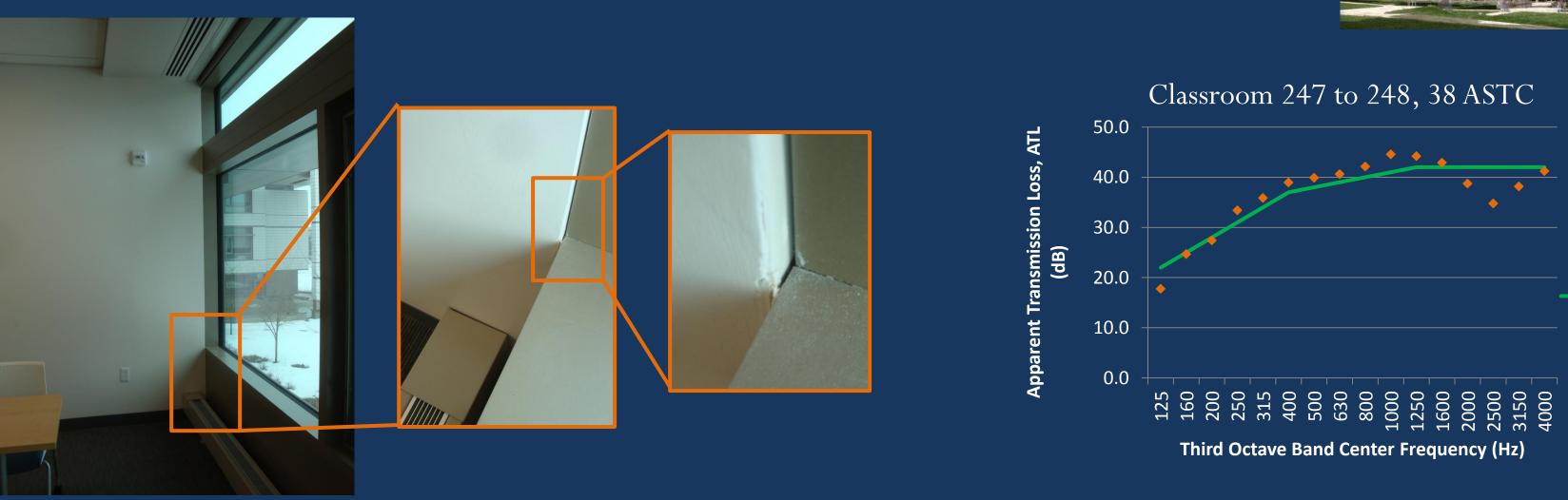
April 15th, 2014

AE Senior Thesis Presentation

• TL Data ---Contour

Third Octave Band Center Frequency (Hz)

The 🎢 Ganae Building Matthew Neal's Senior Thesis


> Overview **Existing Conditions Geothermal Depth** System Alternatives **Energy & Emissions** Life Cycle Cost Analysis Acoustics **Onsite Measurements** Heat Pumps **Campus-wide Geothermal** Conclusions

Matthew Neal, Mechanical Option

Dr. Stephen Treado, Advisor

Spring 2014

Acoustics Breadth

Onsite Measurements

April 15th, 2014

AE Senior Thesis Presentation

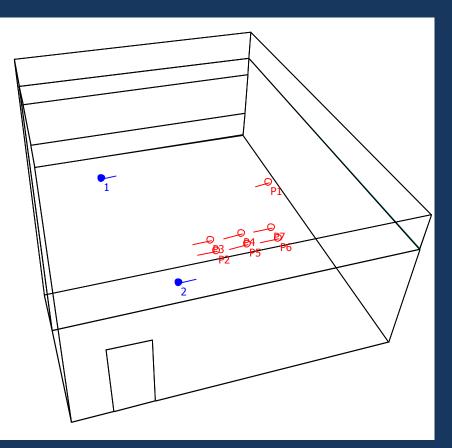
TL Data ---Contour

The Gaige Building Matthew Neal's Senior Thesis

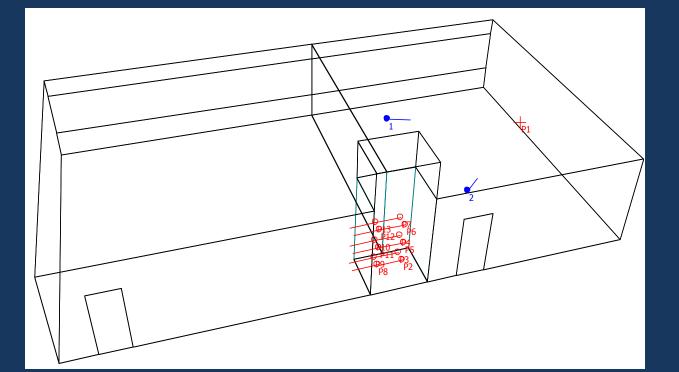
> Overview **Existing Conditions** Geothermal Depth System Alternatives **Energy & Emissions** Life Cycle Cost Analysis Acoustics **Onsite Measurements** Heat Pumps **Campus-wide Geothermal** Conclusions

Matthew Neal, Mechanical Option

Acoustics Breadth


Heat Pump Sound Isolation

• Option 1: ceiling plenum


• Classroom & heat pump modeled in Odeon

Dr. Stephen Treado, Advisor

Spring 2014

Option 2: mechanical room

April 15th, 2014

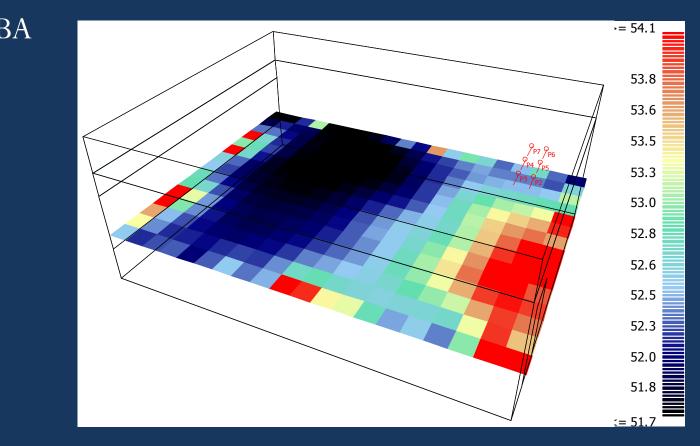
AE Senior Thesis Presentation

The Gaige Building Matthew Neal's Senior Thesis

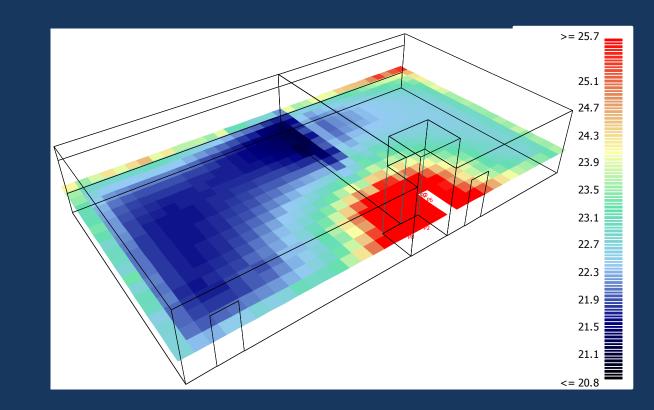
> Overview **Existing Conditions Geothermal Depth** System Alternatives **Energy & Emissions** Life Cycle Cost Analysis Acoustics **Onsite Measurements** Heat Pumps **Campus-wide Geothermal** Conclusions

Matthew Neal, Mechanical Option

Acoustics Breadth


Dr. Stephen Treado, Advisor

Heat Pump Sound Isolation


- Option 1: ceiling plenum
- Classroom & heat pump modeled in Odeon
 - Inadequate background noise level
 - ~ 50 to 55 dBA

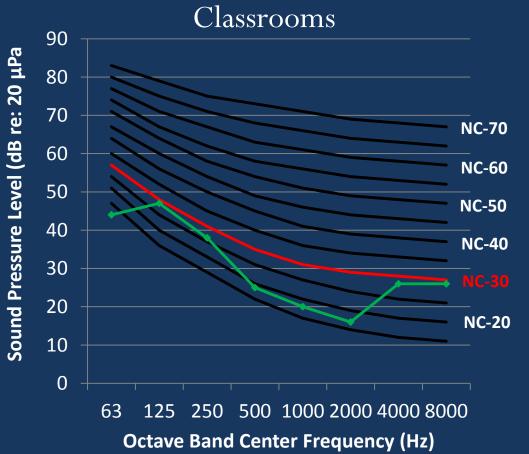
Spring 2014

- Option 2: mechanical room
 - Meets 35 dBA criteria
 - $\sim 20 \text{ to} 26 \text{ dBA}$

April 15th, 2014

000

AE Senior Thesis Presentation

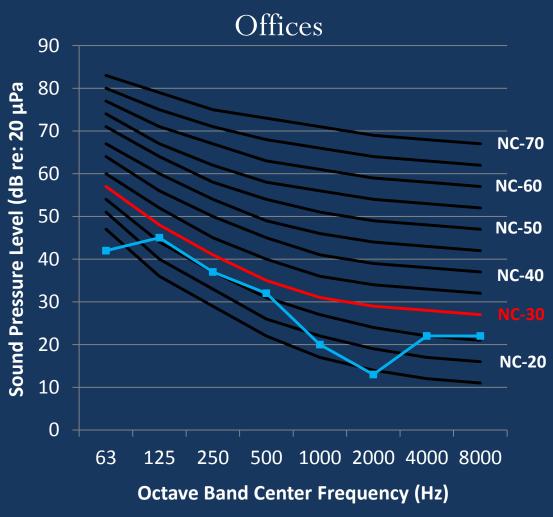

The 🦯 Ganae JBuilding Matthew Neal's Senior Thesis

> Overview **Existing Conditions Geothermal Depth** System Alternatives **Energy & Emissions** Life Cycle Cost Analysis Acoustics **Onsite Measurements** Heat Pumps **Campus-wide Geothermal** Conclusions

Acoustics Breadth

Heat Pump Ductwork Noise Control

• Private Offices & Classrooms


Matthew Neal, Mechanical Option

Dr. Stephen Treado, Advisor

Spring 2014

- Specify minimum lengths of duct lining

Minimum Duct Lining Lengths			
Path	Private Office	Classroom	
Supply	2 feet	3 feet	
Return	3 feet	5 feet	

April 15th, 2014

AE Senior Thesis Presentation

The 🖊 Garae Building Matthew Neal's Senior Thesis

> Overview **Existing Conditions Geothermal Depth** System Alternatives **Energy & Emissions** Life Cycle Cost Analysis Acoustics **Onsite Measurements** Heat Pumps **Campus-wide Geothermal** Conclusions

Matthew Neal, Mechanical Option

Dr. Stephen Treado, Advisor

Spring 2014

Campus Geothermal

Initial Motivation

- Close proximity
- All same owner
- More space with vertical wells
- Potential diversity benefits
- Utility usage data known Need to know: heating, cooling, and ventilation loads

April 15th, 2014

AE Senior Thesis Presentation

The / Garae Building Matthew Neal's Senior Thesis

> Overview **Existing Conditions Geothermal Depth** System Alternatives **Energy & Emissions** Life Cycle Cost Analysis Acoustics **Onsite Measurements** Heat Pumps **Campus-wide Geothermal** Conclusions

Matthew Neal, Mechanical Option

Dr. Stephen Treado, Advisor

Spring 2014

Campus Geothermal Model Validation

Building Name

The Franco Building The Gaige Building Thun Library Luerssen Building anssen Conference Ce Perkins Student Cente Beaver Community Cer lintz Bookstore Il Campus Residences

Model Validation Performance

EIA Ta	EIA Targets		Model Results		Deviations
Electricity	Nat. Gas	Electricity	Nat. Gas	Electricity	Nat. Gas
(kWh)	(therms)	(kWh)	(therms)	(kWh)	(therms)
163007	7525	164693	7905	1.03%	5.04%
223701	11643	226577	11816	1.29%	1.49%
330557	7041	331394	7089	0.25%	0.69%
800746	0	800627	0	0.01%	n/a
101072	0	100504	0	0.56%	n/a
593073	0	592461	0	0.10%	n/a
176622	5607	177305	5338	0.39%	4.79%
31168	0	31800	0	2.03%	n/a
455342	0	458615	0	0.72%	n/a
	Electricity (kWh) 163007 223701 330557 330557 800746 101072 593073 176622 31168	ElectricityNat. Gas(kWh)(therms)16300775252237011164333055770418007460101072059307301766225607311680	ElectricityNat. GasElectricity(kWh)(therms)(kWh)1630077525164693223701116432265773305577041331394800746080062710107201005045930730592461176622560717730531168031800	Electricity Nat. Gas Electricity Nat. Gas (kWh) (therms) (kWh) (therms) 163007 7525 164693 7905 223701 11643 226577 11816 330557 7041 331394 7089 800746 0 800627 0 101072 0 100504 0 593073 0 592461 0 176622 5607 177305 5338 31168 0 31800 0	Electricity Nat. Gas Electricity Nat. Gas Electricity (kWh) (therms) (kWh) (therms) (kWh) 163007 7525 164693 7905 1.03% 223701 11643 226577 11816 1.29% 330557 7041 331394 7089 0.25% 800746 0 800627 0 0.01% 101072 0 100504 0 0.56% 593073 0 592461 0 0.10% 176622 5607 177305 5338 0.39% 31168 0 31800 0 2.03%

- 2003 EIA building energy use survey used
- End use energy percentages estimated
- Trace model created for each building
- Validated to utility and EIA percentage estimates

AE Senior Thesis Presentation

The 🖊 Garae Building Matthew Neal's Senior Thesis

> Overview **Existing Conditions Geothermal Depth** System Alternatives **Energy & Emissions** Life Cycle Cost Analysis Acoustics **Onsite Measurements** Heat Pumps **Campus-wide Geothermal** Conclusions

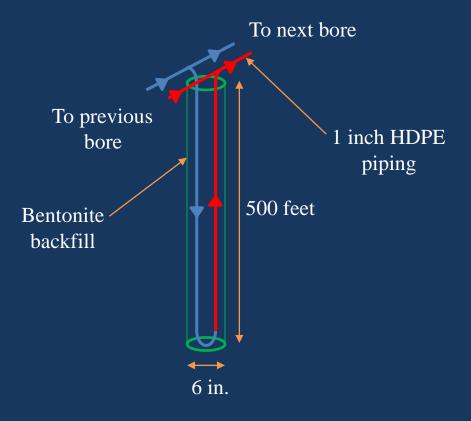
Matthew Neal, Mechanical Option

Dr. Stephen Treado, Advisor

Campus Geothermal

Spring 2014

Sizing and Layout


• 463,653 feet of wells required

• 500' well depth used

• 1020 wells minimum

1050 wells chosen

AE Senior Thesis Presentation

The 🦯 Ganae JBuilding Matthew Neal's Senior Thesis

> Overview **Existing Conditions Geothermal Depth** System Alternatives **Energy & Emissions** Life Cycle Cost Analysis Acoustics **Onsite Measurements** Heat Pumps **Campus-wide Geothermal** Conclusions

Matthew Neal, Mechanical Option

Dr. Stephen Treado, Advisor

Campus Geothermal

Spring 2014


Annual Energy Savings

 $\widehat{\bullet}$

\$35,000.00 \$30,000.00 \$25,000.00 \$20,000.00 \$15,000.00 \$10,000.00 \$5,000.00 \$-

- Baseline and geothermal models created
 - Annual Energy Savings: \$58,166.00
- ~ 27.2 % reduction in emissions

CO2e

CO₂

CH4

1₂0

NO

SO_x

CO

PM10

Geothermal Design Total	Percent
Emissions (lb/yr)	Decrease %
11108037.4	27.20%
10489303.8	27.18%
22104.3	27.59%
246.3	27.24%
18824.4	27.38%
52749.9	27.59%
5558.6	27.00%
597.2	27.10%
1261763.3	27.59%
r Thesis Presentation	Slide 27

The 🔿 Ganae Building Matthew Neal's Senior Thesis

> Overview **Existing Conditions Geothermal Depth** System Alternatives **Energy & Emissions** Life Cycle Cost Analysis Acoustics **Onsite Measurements** Heat Pumps **Campus-wide Geothermal** Conclusions

Matthew Neal, Mechanical Option

Dr. Stephen Treado, Advisor

Spring 2014

Car

Increased First Co Increased First Co Location Multipli Increased First Co Savings from Orig Time Multiplier -Savings from Orig **Overall First Cost**

Campus Geothermal Life Cycle Cost Analysis

npus - Increased First-Costs					
Cost Item	Amount				
ost - Building Costs	\$ 1,252,778.74				
ost – Well Field Costs	\$ 5,734,520.38				
ier - Reading PA	0.988				
ost - Reading	\$ 6,903,451.53				
ginal Design - 2009	\$ 484,710.00				
2014 to 2009	0.889				
ginal Design - 2014	\$ 545,230.60				
Increase:	\$ 6,358,220.94				

- Increased first costs estimated **\$6,358,220.94** increase
- No reasonable payback period was found
 - Very high increased first costs
 - No savings realized from other buildings

April 15th, 2014

The 🔿 🔸 Garde Building Matthew Neal's Senior Thesis

> Overview **Existing Conditions Geothermal Depth** System Alternatives **Energy & Emissions** Life Cycle Cost Analysis Acoustics **Onsite Measurements** Heat Pumps **Campus-wide Geothermal** Conclusions

Matthew Neal, Mechanical Option

Dr. Stephen Treado, Advisor

Campus Geothermal

Spring 2014

Life Cycle Cost Analysis

The Gaige I The Franco The Thun Li The Hintz Bo The Beaver The Perkins The Jannesc The Luersse All Campus

Building	Required Bores		
Building	48		
Building	109		
brary	173		
ookstore	4		
Community Commons	122		
Student Center	202		
on Conference Center	37		
en Building	284		
Residences	58		
Total Bores for Campus, separate	1038		
Total Bores for Campus, together	928		
Diversity Realized	89.4%		

- Increased first costs estimated **\$6,358,220.94** increase
- No reasonable payback period was found
 - Very high increased first costs
 - No savings realized from other buildings
- Relatively small amount of diversity • ~ 89.4% overall

April 15th, 2014

AE Senior Thesis Presentation

The 🔿 Garae Building Matthew Neal's Senior Thesis

> Overview **Existing Conditions Geothermal Depth** System Alternatives **Energy & Emissions** Life Cycle Cost Analysis Acoustics **Onsite Measurements** Heat Pumps **Campus-wide Geothermal** Conclusions

Matthew Neal, Mechanical Option

Dr. Stephen Treado, Advisor

Spring 2014

Campus Geothermal Life Cycle Cost Analysis

Load I

Actua

Simple Payback with 10% Safety Factor

Diversity	Bores: 10% Safety	First Cost Increase	Simple Payback
00%	1142	\$ 6,185,478.68	82.64
95%	1085	\$ 5,906,080.61	78.90
90%	1028	\$ 5,626,682.53	75.17
35%	971	\$ 5,347,284.45	71.44
30%	914	\$ 5,067,886.37	67.70
75%	857	\$ 4,788,488.30	63.97
70%	800	\$ 4,509,090.22	60.24
55%	743	\$ 4,229,692.14	56.51
50%	686	\$ 3,950,294.06	52.77
55%	628	\$ 3,665,994.26	48.98
50%	571	\$ 3,386,596.19	45.24
Building	1050	\$ 5,734,520.38	76.61

- Effect of increased diversity

 - Not justifiable

April 15th, 2014

Poor payback period with high diversity

AE Senior Thesis Presentation

The 🦯 Garae Building Matthew Neal's Senior Thesis

> Overview **Existing Conditions Geothermal Depth** System Alternatives **Energy & Emissions** Life Cycle Cost Analysis Acoustics **Onsite Measurements** Heat Pumps **Campus-wide Geothermal** Conclusions

Matthew Neal, Mechanical Option

Dr. Stephen Treado, Advisor

Campus Geothermal

Spring 2014

Life Cycle Cost Analysis

Increased Sa

Current [

- \$ 1,000,
- \$ 3,000,0
- \$ 4,000,0
- \$ 4,400,0
- \$ 4,500,0
- \$ 4,600,0
- \$ 4,800,0
- \$ 5,000,0
- \$ 5,200,0
- \$ 5,500,0

Savings Comparison – With Current Safety Factor						
ivings (\$)	New First Cost		Simple Payback	Discounted Payback		
esign	\$	5,734,520.38	76.61	> 40 years		
000.00	\$	4,734,520.38	63.25	> 40 years		
000.00	\$	2,734,520.38	36.53	> 40 years		
00.00	\$	1,734,520.38	23.17	> 40 years		
000.00	\$	1,334,520.38	17.83	30.11		
000.00	\$	1,234,520.38	16.49	25.02		
000.00	\$	1,134,520.38	15.16	21.56		
000.00	\$	934,520.38	12.48	16.34		
000.00	\$	734,520.38	9.81	12.21		
000.00	\$	534,520.38	7.14	8.68		
000.00	\$	234,520.38	3.13	4.10		

- Effect of increased diversity

 - Not justifiable
- Effect of increased initial savings

 - Savings from new buildings

Poor payback period with high diversity

• Feasible payback with \$4.5 million initial savings Savings from renovation alternatives for buildings

AE Senior Thesis Presentation

The 🖊 cranae Building Matthew Neal's Senior Thesis

> Overview **Existing Conditions Geothermal Depth** System Alternatives **Energy & Emissions** Life Cycle Cost Analysis Acoustics **Onsite Measurements** Heat Pumps **Campus-wide Geothermal** Conclusions

Matthew Neal, Mechanical Option

Final Conclusions

- Horizontal system cheaper 6.1 years
- Vertical system less space constraints 12.7 years
- Heat pump noise control
 - Isolated through partition design
 - Isolated from minimum duct lining lengths
- Gaige Building compared with ANSI S12.60
- Meets requirements for RT and BNL
 - Some partitions do not meet STC requirements

Dr. Stephen Treado, Advisor Spring 2014

Gaige Building and Campus Geothermal

• Both vertical and horizontal designs feasible

- Campus-wide geothermal
 - Not reasonable payback
 - Less diversity found in campus load
 - Initial savings are needed

April 15th, 2014

AE Senior Thesis Presentation

The 🦯 cranae JBuilding Matthew Neal's Senior Thesis

> Overview **Existing Conditions Geothermal Depth** System Alternatives **Energy & Emissions** Life Cycle Cost Analysis Acoustics **Onsite Measurements** Heat Pumps **Campus-wide Geothermal** Conclusions

Final Conclusions

- Special thanks to:
 - Scott Mack & Justin Kalanesh, H. F. Lenz
 - Kim Berry, Penn State Berks
 - Dr. Stephen Treado, adviser
 - Dr. Richard Mistrick, honors adviser
 - Moses Ling
 - Dr. Michelle Vigeant
 - Aaron King and Cory Clippinger
 - Photos courtesy of Penn Sate Berks and Illumination Arts

Matthew Neal, Mechanical Option

Dr. Stephen Treado, Advisor

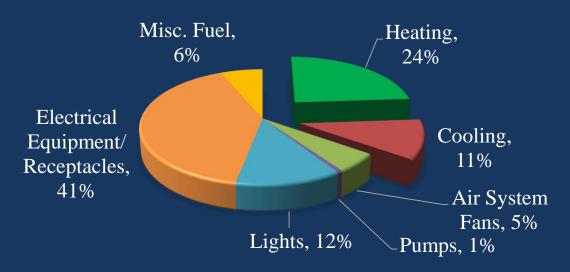
Spring 2014

Acknowledgements

April 15th, 2014

AE Senior Thesis Presentation

Thank You!



Matthew Neal Mechanical Option Dr. Stephen Treado, Adviser

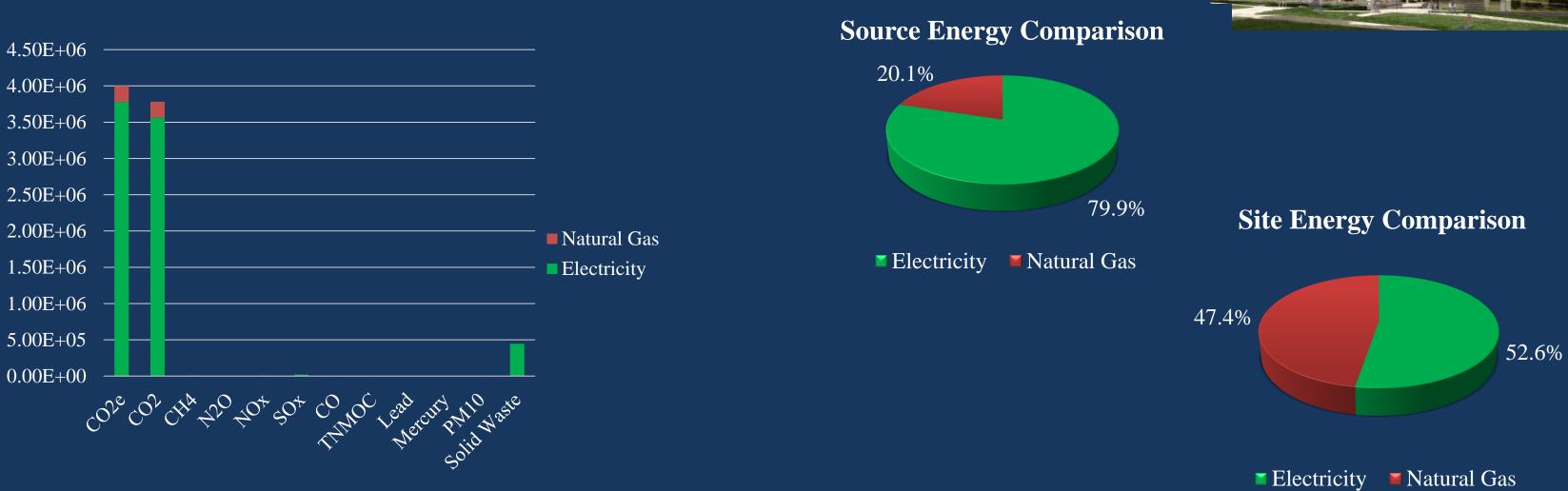
The 🦯 , Garge Building

Matthew Neal's Senior Thesis

Appendix Slides

4.00E+06

3.00E+06 2.50E+06 2.00E+06 1.50E+06 1.00E+06 5.00E+05


0.00E+00

Matthew Neal, Mechanical Option

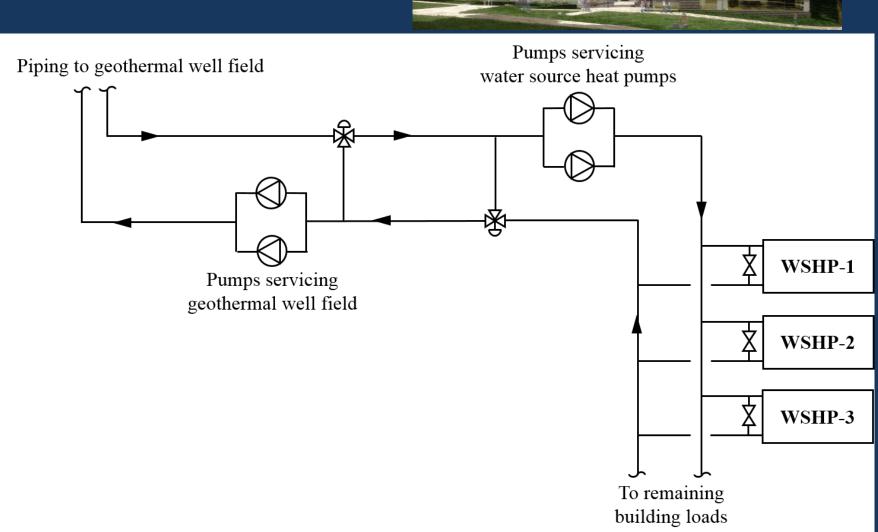
Dr. Stephen Treado, Advisor

Spring 2014

Existing Conditions

AE Senior Thesis Presentation

Appendix Slides

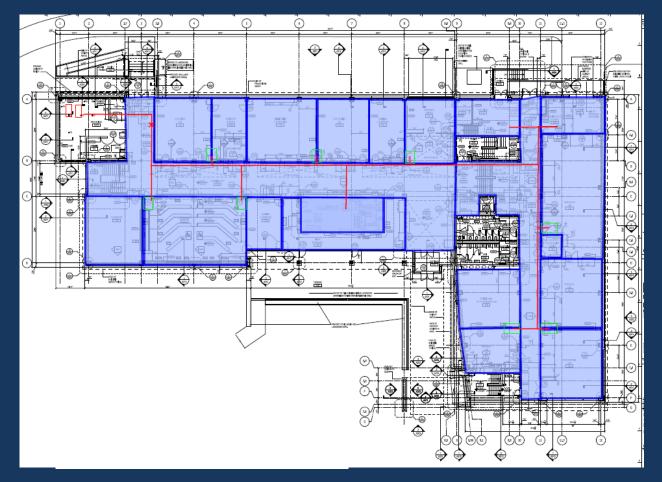

$$L_{c} = \frac{q_{a}R_{ga} + (q_{lc} - 3.41W_{c})(R_{b} + PLF_{m}R_{gm} + R_{gd}F_{sc})}{t_{g} - \frac{t_{wi} + t_{wo}}{2} - t_{p}}$$
$$L_{h} = \frac{q_{a}R_{ga} + (q_{lh} - 3.41W_{h})(R_{b} + PLF_{m}R_{gm} + R_{gd}F_{sc})}{t_{g} - \frac{t_{wi} + t_{wo}}{2} - t_{p}}$$

Matthew Neal, Mechanical Option Dr. Stephen Treado, Advisor

Spring 2014

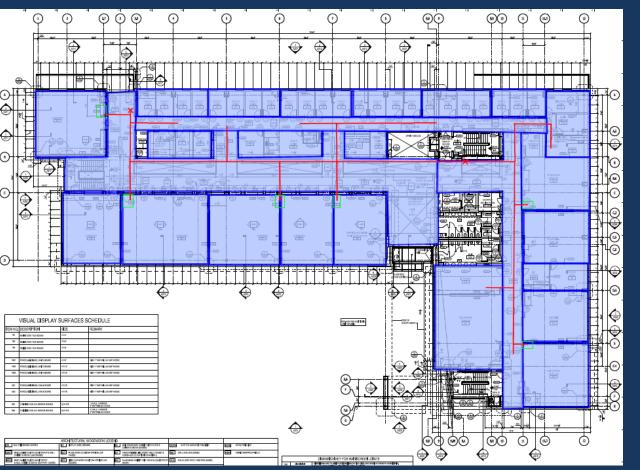
Gaige Geothermal

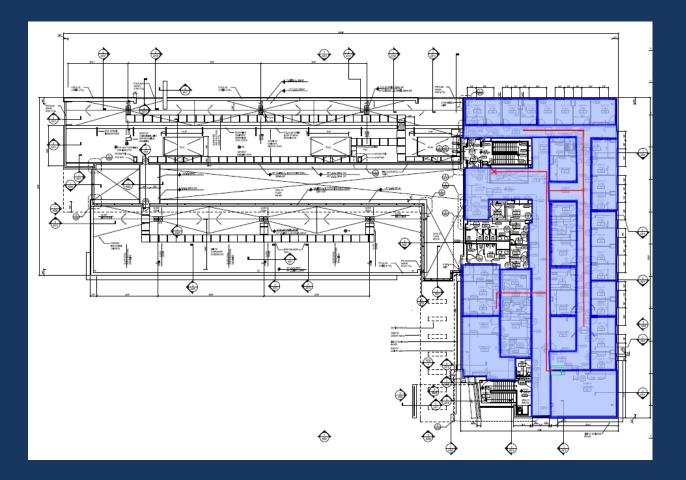
Geothermal Design						
meter	Heating	Coolir				
rt-Circuit Factor (F _{sc})	1.04	1.04				
-Load Factor (PLF _m)	1	1				
rage Heat Transfer to Ground (q _a)	387000	38700				
k Loads (q _{lc} and q _{lh})	679400	10664				
stance of Ground, Annual pulse (R _{ga})	0.215	0.215				
stance of Ground, Daily pulse (R _{gd})	0.129	0.129				
stance of Ground, Monthly pulse (R _{gm})	0.207	0.207				
stance of Bore (R _b)	0.09	0.09				
isturbed Ground Temperature (tg)	53	53				
perature Penalty for Bore Spacing (t _p)	1.8	1.8				
t Pump Inlet Temperature (t _{wi})	38	78				
t Pump Outlet Temperature (t _{wo})	33	85				
em Power Input (W _c and W _h)	3728.5	3728.				
uired Bore Length (L _c and L _h)	23636.4	17760				



AE Senior Thesis Presentation

Appendix Slides



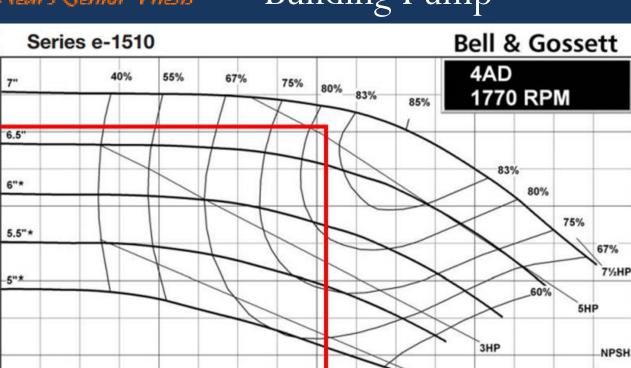

Matthew Neal, Mechanical Option

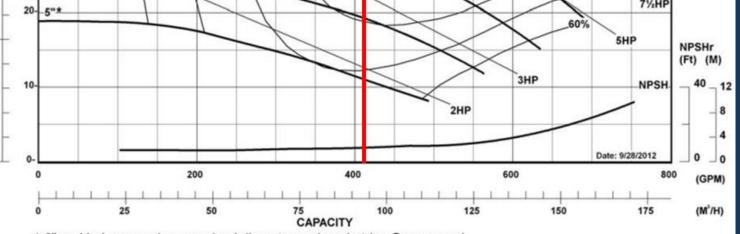
Dr. Stephen Treado, Advisor

Spring 2014

Gaige Geothermal

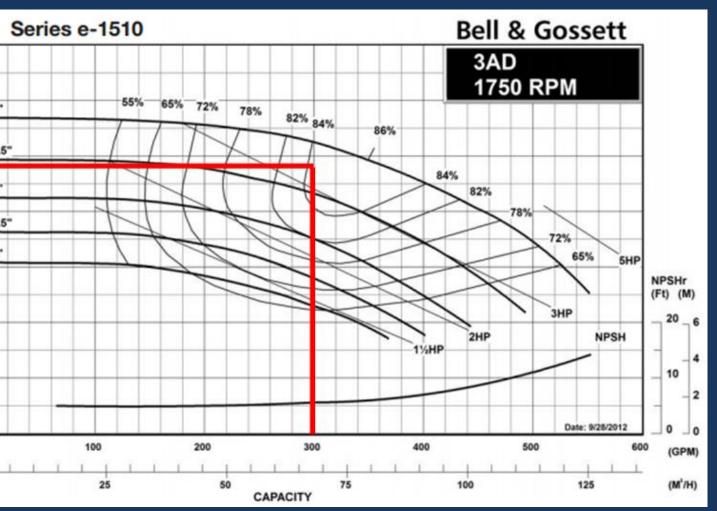
April 15th, 2014


AE Senior Thesis Presentation

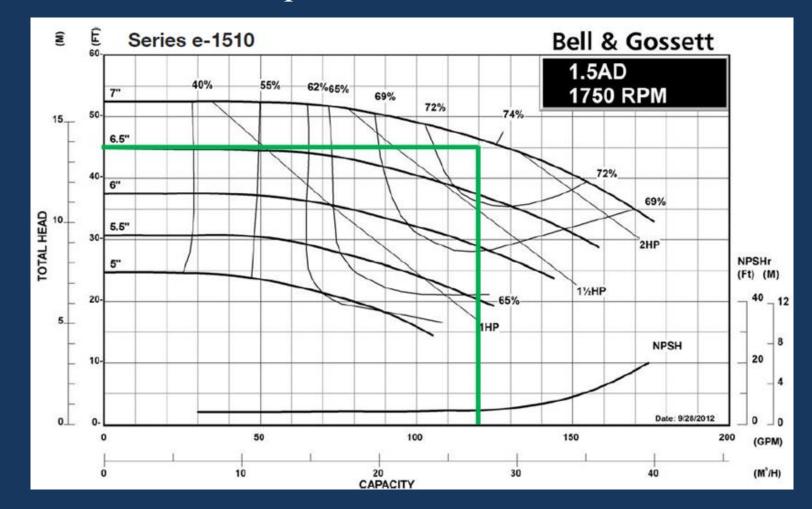


Appendix Slides

Building Pump



Matthew Neal, Mechanical Option Dr. Stephen Treado, Advisor Spring 2014


15____ 5 0

Gaige Geothermal

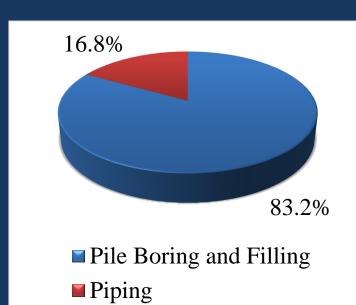
Vertical Pump

Horizontal Pump

April 15th, 2014

AE Senior Thesis Presentation

Matthew Neal's Senior Thesis


Appendix Slides

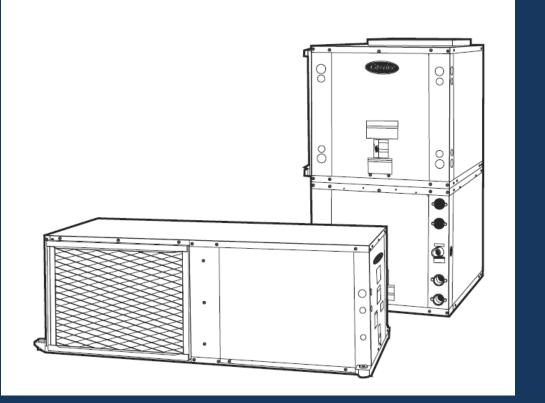
(i)	200			Vertic	cal Geothermal	Additional First	Costs-Cost	Per Pile		
foot)	180 - 160 -	$y = 0.0208x^2 + 1.0428x + 3.2924$ $R^2 = 0.9995$	Item		Unit	Cost		Amount	Units	Expense
lear	140 -	*	Item	Materials	Labor	Equipment	Total	Amount		Lapense
l lin	120 - 100 -		Pile Boring and Filling	\$ 1.09	\$ 5.28	\$ 3.92	\$ 10.29	300	VLF	\$ 3,088.41
tical	80 -		1" HDP Pipe	\$ 0.79	\$ -	\$ -	\$ 0.79	600	LF	\$ 474.00
/ver	60 -		1" HDP Elbow	\$ 5.60	\$ -	\$ -	\$ 5.60	4	Each	\$ 22.40
st (\$/	40 - 20 -	•	1" HDP Joints	\$ -	\$ 5.55	\$ -	\$ 5.55	10	Each	\$ 55.50
Cost	0 +		1" HDP Tee	\$ 7.30	\$ -	\$ -	\$ 7.30	2	Each	\$ 14.60
	0	20 40 60 80 Diameter of Bore (inches) 60 80	Welding Machine	\$ -	\$ -	\$ 40.50	\$ 40.50	1.47	Each	\$ 59.34
		Diameter of Dore (menes)							Total	\$ 3,714.25

Matthew Neal, Mechanical Option Dr. Stephen Treado, Advisor

Spring 2014

April 15th, 2014

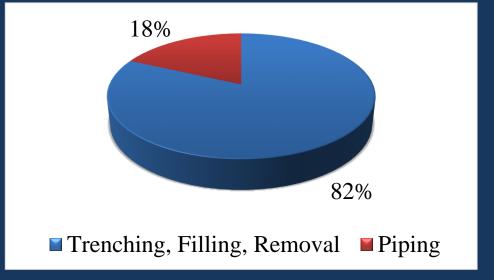
AE Senior Thesis Presentation


Life Cycle Rate Assumptions							
Discount Rate 8.00%							
Escalation Rates							
Electricity	3.75%						
Natural Gas	5.00%						
Materials	1.73%						
Main. & Labor	1.73%						
Study Period 20 year							

Matthew Neal's Senior Thesis

Appendix Slides

Item


Trenching for piles Fill for Trenches Backfill for Trenches Hauling Dirt 1" HDP Pipe 1" HDP Elbow 1" HDP Joints 1" HDP Tee Welding Machine

Matthew Neal, Mechanical Option

Dr. Stephen Treado, Advisor

Spring 2014

Horizontal Geothermal Additional First Costs-Cost Per Pile						
Materials	Un Labor	it Cost Equipment	Total	Amount	Units	Expense
\$ -	\$ 0.59	\$ 0.75	\$ 1.34	800	LF	\$ 1,073.24
\$ 4.85	\$ 1.09	\$ 0.41	\$ 6.35	800	LF	\$ 5,079.17
\$ -	\$ 0.61	\$ 0.21	\$ 0.82	800	LF	\$ 655.64
\$ -	\$ 0.27	\$ 0.37	\$ 0.63	800	LF	\$ 507.37
\$ 0.79	\$ -	\$ -	\$ 0.79	1600	LF	\$ 1,264.00
\$ 5.60	\$ -	\$ -	\$ 5.60	2	Each	\$ 11.20
\$ -	\$ 5.55	\$ -	\$ 5.55	49	Each	\$ 271.95
\$ 7.30	\$ -	\$ -	\$ 7.30	2	Each	\$ 14.60
\$ -	\$ -	\$ 40.50	\$ 40.50	1.47	Days	\$ 59.34
					Total	\$ 8,936.51

April 15th, 2014

AE Senior Thesis Presentation

The / Gaige Building

Matthew Neal's Senior Thesis

Appendix Slides

Energy Multipliers for Electric - Natural Gas Energy Source Buildings

Building Type	Heating		Cooling		Ventilation
building type	Electricity	Nat. Gas	Electricity	Nat. Gas	ventilation
Office - Mid Atlantic	5.88%	54.94%	9.52%	4.01%	9.83%
Classroom - Mid Atlantic	4.93%	68.61%	11.20%	0.00%	30.28%
Public Assembly - Mid Atlantic	1.63%	54.90%	4.96%	38.78%	51.11%
Classroom / Office Averaged	5.40%	61.77%	10.36%	2.00%	20.05%
Public Assembly/Classroom/Office	4.15%	59.48%	8.56%	14.26%	30.40%
Public Assembly/Office	3.75%	54.92%	7.24%	21.39%	30.47%

Avera

Matthew Neal, Mechanical Option

Dr. Stephen Treado, Advisor

Spring 2014

Campus Geothermal

Campus-wide Geothermal Design					
ter	Heating	Cooling			
Circuit Factor (F _{sc})	1.04	1.04			
bad Factor (PLF _m)	1	1			
e Heat Transfer to Ground (q _a)	-1390309	-1390309			
Loads $(q_{lc} \text{ and } q_{lh})$	17939009	16548700			
nce of Ground, Annual pulse (R _{ga})	0.215	0.215			
nce of Ground, Daily pulse (R _{gd})	0.129	0.129			
nce of Ground, Monthly pulse (R _{gm})	0.207	0.207			
nce of Bore (R _b)	0.09	0.09			
urbed Ground Temperature (t _g)	53	53			
ature Penalty for Bore Spacing (t _p)	1.8	1.8			
ump Inlet Temperature (t _{wi})	38	78			
ump Outlet Temperature (t _{wo})	33	85			
Power Input (W_c and W_h)	111855	111855			
ed Bore Length (L _c and L _h)	463653.1	220436.7			

# of Bo	$res = 1.1 * \frac{463653.1}{522} = 10$
" oj Dol	500
	Energy Multipliers
	Building Type
	Office - Mid Atlantic
	Public Assembly - Mid Atlantic

Office/Food Service/Public As April 15th, 2014

Classroom - Mid Atlantic

Food Service - Mid Atlantic

Classroom / Office Averaged

Lodging - Mid Atlantic

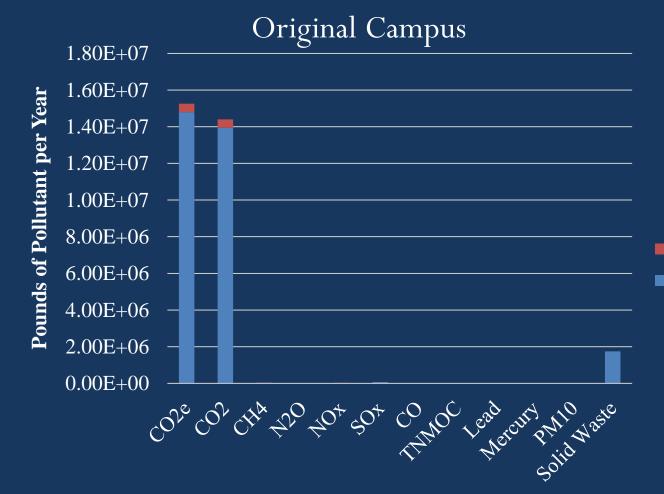
Retail - Mid Atlantic

020 wells

s for Electric only Buildings

	Heating	Cooling	Ventilation
	27.99%	7.21%	6.18%
С	39.95%	19.08%	20.98%
	50.72%	4.91%	13.26%
	12.46%	5.43%	2.18%
	17.51%	2.98%	3.69%
	31.24%	6.24%	8.06%
	39.36%	6.06%	9.72%
sembly	28.48%	9.76%	10.28%

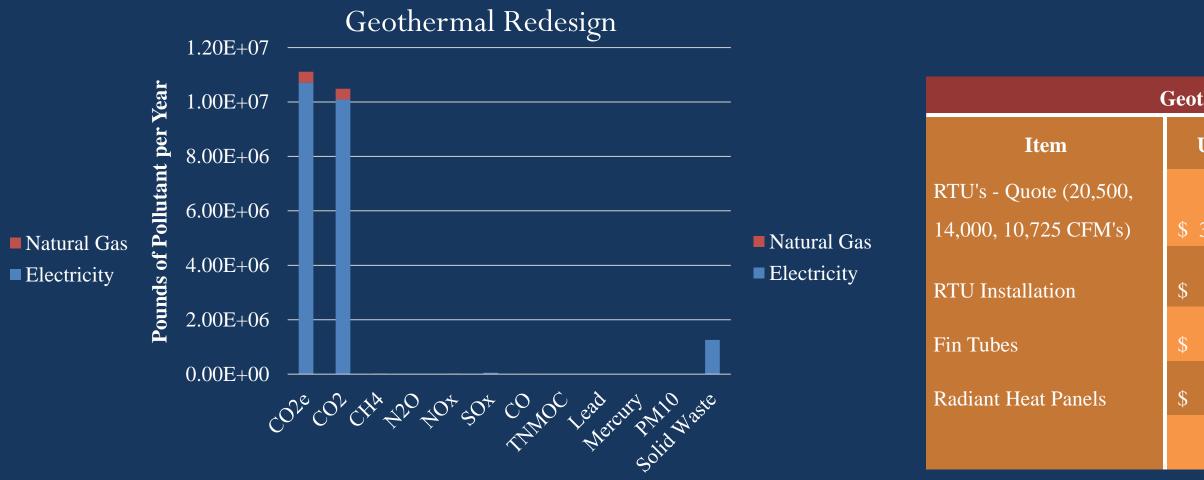
AE Senior Thesis Presentation


The / Gaige Building

Matthew Neal's Senior Thesis

Appendix Slides

Background Noise Levels			
Room	Overall dBA		
Classroom 120	32 dBA		
Classroom 121	31 dBA		
Classroom 122	29 dBA		
Classroom 246	32 dBA		
Classroom 247	31 dBA		
Classroom 248	28 dBA		



Matthew Neal, Mechanical Option

Dr. Stephen Treado, Advisor

Spring 2014

Campus Geothermal

April 15th, 2014

AE Senior Thesis Presentation

hermal Cost Savings				
Unit Cost	Amount	Units	Savings	
300,000.00		All	\$ 300,000.00	
2.00	45,230	CFM	\$ 90,460.00	
75.00	1150	LF	\$ 86,250.00	
100.00	80	Each	\$ 8,000.00	
100100			¢ 0,000100	
			\$ 484,710.00	